pyspark.sql.functions.to_timestamp_ntz#
- pyspark.sql.functions.to_timestamp_ntz(timestamp, format=None)[source]#
Parses the timestamp with the format to a timestamp without time zone. Returns null with invalid input.
New in version 3.5.0.
- Parameters
See also
Examples
Example 1: Using default format to parse the timestamp string.
>>> import pyspark.sql.functions as sf >>> df = spark.createDataFrame([('2015-04-08 12:12:12',)], ['ts']) >>> df.select('*', sf.to_timestamp_ntz('ts')).show() +-------------------+--------------------+ | ts|to_timestamp_ntz(ts)| +-------------------+--------------------+ |2015-04-08 12:12:12| 2015-04-08 12:12:12| +-------------------+--------------------+
Example 2: Using user-specified format ‘yyyy-MM-dd’ to parse the date string.
>>> import pyspark.sql.functions as sf >>> df = spark.createDataFrame([('2016-12-31',)], ['dt']) >>> df.select('*', sf.to_timestamp_ntz(df.dt, sf.lit('yyyy-MM-dd'))).show() +----------+--------------------------------+ | dt|to_timestamp_ntz(dt, yyyy-MM-dd)| +----------+--------------------------------+ |2016-12-31| 2016-12-31 00:00:00| +----------+--------------------------------+
Example 3: Using a format column to represent different formats.
>>> import pyspark.sql.functions as sf >>> df = spark.createDataFrame( ... [('2015-04-08', 'yyyy-MM-dd'), ('2025+01+09', 'yyyy+MM+dd')], ['dt', 'fmt']) >>> df.select('*', sf.to_timestamp_ntz('dt', 'fmt')).show() +----------+----------+-------------------------+ | dt| fmt|to_timestamp_ntz(dt, fmt)| +----------+----------+-------------------------+ |2015-04-08|yyyy-MM-dd| 2015-04-08 00:00:00| |2025+01+09|yyyy+MM+dd| 2025-01-09 00:00:00| +----------+----------+-------------------------+